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Wolfgang Maass

w e t w a r e

If you pour water over your PC, the PC will stop working. This is because very late in the
history of computing—which started about 500 million years ago1—the PC and other devices
for information processing were developed that require a dry environment. But these new
devices, consisting of hardware and software, have a disadvantage: they do not work as
well as the older and more common computational devices that are called nervous sys-
tems, or brains, and which consist of wetware. These superior computational devices were
made to function in a somewhat salty aqueous solution, apparently because many of the
first creatures with a nervous system came from the sea. We stil l carry an echo of this
history of computing in our heads: the neurons in our brain are embedded in an artificial
sea-environment, the salty aqueous extracellular fluid which surrounds the neurons in our
brain. The close relationship between the wetware in our brain and the wetware in evolu-
tionary much older organisms that still l ive in the sea is actually quite helpful for research.
Neurons in the squid are 100 to 1000 times larger than the neurons in our brain, and
therefore easier to study. Nevertheless the equations that Hodgkin and Huxley derived to
model the dynamics of the neuron that controls the escape reflex of the squid (for which
they received the Nobel prize in 1963), also apply to the neurons in our brain. In this short
paper I want to give you a glimpse of this foreign world of computing in wetware.
One of the technical problems that nature had to solve to enabe computation in wetware
was how to communicate intermediate results from the computation of one neuron to
other neurons, or to output-devices such as muscles. In a PC one sends streams of bits
over copper wires. But copper wires were not available a few hundred mill ion years ago,
nor do they work as well in a sea-environment. The solution that nature found was the
so-called action potential or spike. The spike plays in a brain a similar role to that of a
bit in a digital computer: it is the common unit of information in wetware. A spike is a
sudden voltage increase for about 1 ms (1 ms = 1/1000 second) that is created at the
cell body (soma) of a neuron, more precisely at its trigger zone, and propagated along
a lengthy fiber (called axon) that extends from the cell body. This axon corresponds to
an insulated copper wire in hardware. The gray matter of your brain contains large amounts

Figure 1: Time cause of an action potential 
at the soma of a neuron.

Figure 2: Simplified drawing of a neuron, 
with input region, the cell body or soma 
(the trigger zone lies at the right end of 
the soma, just where the axon begins), 
and output region. Synapses are indicated 
by blue triangles.
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of such axons: about 4 km in every cubic mill imeter ( = 1 mm3). Axons have numerous
branching points (see the axonal tree on the right hand side of Fig. 1), at which most
spikes are automatically duplicated, so that they can enter each branch of the axonal
tree. In this way a spike from a single neuron can be transmitted to a few thousand other
neurons. But in order to move from one neuron to another, the spike has to pass a rather
complicated switch, a so-called synapse (marked by a blue triangle in Figure 2, and shown
in more detail in Figure 3). 

When a spike enters a synapse, it is l ikely to trigger a complex chain of events that are
indicated in Figure 32: a small vesicle fi l led with special molecules (“neurotransmitter“)
is fused with the cell membrane of the presynaptic terminal, thereby releasing the neu-
rotransmitter into the extracellular fluid. Whenever a neurotransmitter molecule reach-
es a particular molecular arrangement (a “receptor”) in the cell membrane of the next
neuron, it will open a channel in that cell membrane through which charged particles (ions)
can enter the next cell . This causes an increase or decrease (depending on the type of
channel that is opened and the types of ions that this channel lets through) of the mem-
brane voltage by a few mill ivolt (1 mill ivolt = 1/1000 volt). 
One calls these potential changes EPSPs (excitatory postsynaptic potentials) if they increase
the membrane voltage, and otherwise I PSPs
(inhibitory postsynaptic potentials). In contrast
to the spikes, which all look alike, the size and
shape of  these postsynapt ic  potent ia ls
depends very much on the particular synapse
that causes it. In fact it wil l also depend on
the current “mood" and the recent “experi-
ences" of this synapse, since the postsynap-
tic potentials are different sizes, depending
on the pattern of spikes that have reached the
synapse in the past, on the interaction of these
spikes with the firing activity of the postsy-
naptic neuron, and also on other signals that
reach the synapse in the form of various mol-
ecules (e.g. neurohormones) through the
extracellular fluid. 

Figure 3: The spike enters the presynaptic 
terminal, which is an endpoint of the axonal
tree of the preceding neuron, shown at the
top. It may cause a vesicle fi l led with 
neurotransmitter to fuse with the cell 
membrane, and to release its neurotrans-
mitter molecules into the small gap 
(synaptic cleft) to the cell membrane of 
the next neuron (called postsynaptic neuron
in this context), which is shown at the 
bottom. If the neurotransmitter reaches a
receptor of the postsynaptic neuron, a
channel wil l be opened that lets charged
particles pass into the postsynaptic 
neuron. Empty vesicles are recycled by 
the presynaptic terminal.

Figure 4: Postsynaptic potentials are either 
excitatory (EPSP) or inhibitory (I PSP). The 
membrane voltage is a sum of many such 
postsynaptic potentials. As soon as this sum 
reaches the firing threshold, the neuron fires.
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Sometimes people wonder whether it is possible to replace wetware by hardware, to replace
for example parts of a brain by sil icon chips. This is not so easy because wetware does
not consist of fixed computational components, l ike a sil icon chip, that perform the same
operation in the same way every day of their working life. Instead the channels and recep-
tors of neurons and synapses move around, disappear, and are replaced by new and pos-
sibly different receptors and channels that are continuously reproduced by a l iving cell
in dependence on the individual “experience" of that cell (such as the firing patterns of
the pre- and postsynaptic neuron, and the cocktail of biochemical substances that reach
the cell through the extracellular fluid). This implies that next year a synapse in your brain
is l ikely to perform its operations quite differently from today, whereas a sil icon clone of
your brain would be stuck with the “old" synapses from this year. 
The postsynaptic potentials created by the roughly 10,000 synapses converging on a sin-
gle neuron are transmitted by a tree of input wires (“dendritic tree", see Fig. 1) to the
trigger zone at the cell body of a neuron. Whenever the sum of these hundreds and thou-
sands of continuously arriving voltage changes reaches the firing threshold there, the neu-
ron wil l “fire" (a chain reaction orchestrated through the rapid opening of channels in
the cell membrane that allow positively charged sodium ions to enter the neuron, there-
by increasing the membrane voltage, which causes further channels to open) and send
out a spike through its axon.3 So we are back at our starting point, the spike.

The question is now how a network of neurons can compute with such spikes. Figure 5
presents an il lustration of a tiny network consisting of just 3 neurons, which communi-
cate via sequences of spikes (usually referred to as spike trains). It is taken from an ani-
mated computer installation which is available online. It allows you to create your own
spike train, and watch how the network responds to it. You can also change the strength
of the synapses, and thereby simulate (in an extremely simplified manner) processes that
take place when the neural system “learns.” 4 But we sti l l do not know how to transmit
information via spikes, so let us look at the protocol of a real computation in wetware.
In Figure 6 the spike trains emitted by 30 (randomly selected) neurons in the visual area
of a monkey brain are shown for a period of 4 seconds. All the information from your
senses, all your ideas and thoughts are coded in a similar fashion by spike trains. If you
were, for example, to make a protocol of all the visual information which reaches your
brain within 4 seconds, you would arrive at  a similar figure, but with 1,000,000 rows
instead of 30, because the visual information is transmitted from the retina of your eye
to your brain by the axons of about 1,000,000 neurons.
Researchers used to think that the only computationally relevant signal in the output of

Figure 5: A simulated network of 3 neurons. 
Postsynaptic potentials in the input regions of the 
neurons (dendritic tree) are indicated by green 
curves. Spikes are indicated by white bars on the 
axons, and synapses by blue triangles. In the 
computer installation available online you can create
your own input spike train, and watch the response 
of the network. You can also change the strength 
of the synapses, a process that may correspond to
learning in your brain. See [Maass, 2000],
(http:/ /www.igi.TUGraz.at/maass/118/118.html) 
for more detailed information.
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a neuron was the frequency of its firing. But you may notice in Figure 6 that the frequency
of firing of a neuron tends to change rapidly, and that the time intervals between the spikes
are so irregular that you do not find it easy to estimate the average frequency of firing
of a neuron by looking at just 2 or 3 spikes from that neuron. On the other hand our
brain can compute quite fast, in about 150 ms, with just 2 or 3 spikes per neuron. This
suggests that other features of spike trains must be used by the brain for transmitting
information. Recent experimental studies (see for example [Rieke et al., 1997, Koch 1999,
Recce 1999]) show that in fact the full spatial and temporal pattern of spikes emitted
by neurons is relevant for the message which they are sending to other neurons. Hence
it would be more appropriate to compare the output of a collection of neurons with a
piece of music played by an orchestra. To recognize such a piece of music it does not
suffice to know how often each note is played by each musician. Instead we have to know
how the notes of the musicians are embedded in the melody and the pattern of notes
played by other musicians. One assumes now that in a similar manner many groups of
neurons in the brain code their information through the pattern in which each neuron
fires relative to the other neurons in the group. Hence, one may argue that music is a
code that is much more closely related to the codes used in your brain than the bit-stream
code used by a PC.
The investigation of theoretical and practical possibil it ies to compute with such spatio-
temporal patterns of pulses has led to the creation of a new generation of artif icial neu-
ral networks, so-called pulsbased neural networks (see [Maass, Bishop] for surveys and
recent research results). Such networks are now also appearing in the form of novel elec-
tronic hardware [Mead, 1989, Deiss et al, 1999, Murray, 1999]. An interesting feature of
these pulsbased neural networks is that they do not require a global synchronisation (like
a PC, or a traditional artif icial neural network). So they allow time to be used as a new
dimension for coding information. In addition they can save a lot of energy,5 since no
clock signal has to be transmitted all the time to all components of the network. One
major unsolved problem is the organization of computation in such systems, since the
operating system of wetware is still unknown, even for the squid. Hence our current research,
jointly with neurobiologists, concentrates on unraveling the organization of computation
in neural microcircuits, the lowest level of circuit architecture in the brain (see [Maass,
Natschlaeger, and Markram]).

Figure 6: Recording of spike trains from 
30 neurons in the visual cortex of a 

monkey over 4 seconds. The 30 neurons
were labeled A1–E6 (the labels are given 
on the left of the figure). The spike train

emitted by each of the neurons is recorded
in a separate row. Each point in time when
a neuron fires and thereby emits a spike is

marked by a small vertical bar. So one
reads this figure l ike a music score.

The time needed for a typical fast 
computation in our brain is marked 

in gray; this is 150ms. Within this time 
our brain can solve quite complex 

information processing problems, l ike 
for example the recognition of a face. 

Currently our computers would need 
a substantially longer computation 

time for such tasks.
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Notes
1 One could also argue that the history of computing started somewhat earlier, even before any 

nervous systems existed: 3 to 4 bil l ion years ago when nature discovered information processing
via RNA.

2 See <www.wwnorton.com/gleitman/ch2/tutorials/2tut5.htm> for an online animation.

3 See <www.wwnorton.com/gleitman/ch2/tutorials/2tut2.htm> for an online animation.

4 See <www.igi.TUGraz.at/demos/index.html> . This computer installation was programmed by
Thomas Natschlaeger and Harald Burgsteiner, with support from the Steiermaerkische
Landesregierung. Detailed explanations and instructions are available  online from
<www.igi.TUGraz.at/maass/118/118.html> , see [Maass, 2000b]. Further background 
information is available online from [Natschlaeger], [Maass, 2000a], [Maass, 2001].

5 Wetware consumes much less energy than any hardware that is currently available.. Our brain,
which has about as many computational units as a very large supercomputer, consumes just 
10 to 20 watts.
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