
174 Casey Reas

Programming Media

Casey Reas

The design of software is a defining factor in modern culture and is increas-
ingly becoming a basis for our reality. Citizens of the world unite in spending their lives
staring into the reflective surfaces of their mobile phones and desktop computers. Their
minds and hands operate in the space between reality and the arbitrary rules of menus,
windows, clicking, and dragging. Artists utilize software to comment on our increasingly
digital social and political structures and to challenge the underlying formal assumptions
of computer code. Regardless of the content or intent of their work, contemporary artists
are expressing their ideas through the medium of software. With the continually shifting
focus of the electronic arts (Cybernetics, Virtual Reality, CAVE, A-Life, Net.art,
Augmented Reality), software provides the foundation on which meaning and content
are constructed. With the revitalization of the concept of “software art” at festivals such
as the Transmediale and READ_ME, a critical discussion is emerging around the role of
software within our culture and art practice. This essay extends the discourse and focuses
on the concept of software as a medium capable of unique expressions and program-
ming languages as materials with specific properties.

Software Defined

What is Software?
Software is written in programming languages, sequences of alphanumeric characters
and symbols composed according to rigid syntactical rules.1 If you do not normally see
computer programs, here are a few program fragments for reference:

Perl
opendir(DIR, $dir) || die $!;
@files = readdir(DIR);
closedir(DIR);

foreach $file (@files) {
if($file =~ ".xml") {

handle("$dir/$file");
}

}

C++
main() {

int c;
c = getchar();
while(c != EOF) {
putchar(c);

c = getchar();
}

}

LISP
(define (square x)

(* x x))
(define (sum-of-squares x y)

(+ (square x) (square y)))

CODE Exhibition_electrolobby

175Programming Media

Through writing software, computer programmers describe structures that define
“processes.” These structures are translated into code that is executed by a machine
and the processes are carried out by actively engaging the electronic matter within the
computer. Massachusetts Institute of Technology computer scientist Harold Abelson
explains, “Processes manipulate abstract things called data. The evolution of a process
is directed by a pattern of rules called a program. People create programs to direct
processes.” It is this active process of reading, manipulating, and storing data, that enables
the unique aspects of the software medium.

Software is a Medium
Software has enabled a way to build a bridge between the art of the past and the elec-
tronic arts of the present and future. As articulated by Roy Ascott, we have transitioned
from “content, object, perspective, and representation” to “context, process, immersion,
and negotiation.” The most unique aspect of software as a medium is that it enables
response. A responsive artifact has the ability to interact with its environment. Artificial
reality pioneer Myron Krueger suggests a number of interesting metaphors for interac-
tions between people and software including dialog, amplification, ecosystem, instru-
ment, game, and narrative. I am interested in addressing expressions of software that
are more fundamental than those discussed by Ascott and Krueger. These expressions
are the foundation of the software media and include dynamic form, gesture, behavior,
simulation, self-organization, and adaptation.

Each Language is Unique
Just as there are many different human languages, there are many different programming
languages. In the same way that different concepts can be conveyed through diverse
human languages, different computer languages allow programmers to write diverse soft-
ware structures. Just as some expressions are not translatable from one human
language to another, programming structures often cannot be translated from one machine
language to another. Some programming languages were built specifically for business
applications (COBOL), some for artificial intelligence exploration (LISP), and some data
manipulation (Perl), and many of the structures written within these diverse languages
can only be expressed within that language. The abstract animator and programmer Larry
Cuba describes his experience, “Each of my films has been made on a different system
using a different programming language. A programming language gives you the power
to express some ideas, while limiting your abilities to express others.”

Programming Languages are Materials
It can be useful to think of each programming language as a material with unique afford-
ances and constraints. Different languages are appropriate depending on the context.
Some languages are easy to use but obscure the potential of the computer and some
languages are very complicated, but provide total control through providing complete
access to the machine. For example, some programming languages are flexible and others
are rigid. Flexible languages like Perl and Lingo are good for quickly creating short
programs, but they often become difficult to maintain and understand when programs
become large. Programming with rigid languages like 68008 Assembly or C requires
extreme care and tedious attention to detail, but the results are efficient and robust. In
the same way that the different woods Pine and Oak “feel” and “look” different, soft-
ware programs written in different languages also have distinct aesthetic gestalts. For
example, similar software programs written in Java and Flash have unique differences
that are noticed by people familiar with both.

176 Casey Reas

Programming is Exclusive
Many people think that computer programmers are a unique kind of person, different from
everyone else. One reason programming remains within the boundaries of this type of
personality is that similarly minded people usually create the programming languages.
It is possible to create different kinds of programming languages that engage people with
visual and spatial minds. Alternative languages expand the programming space to people
who think differently. An early alternative language was LOGO, designed in the late 1960s
by Seymour Papert as a language concept for children. Through LOGO, children are
able to program many different media including a robotic turtle and graphic images on
screen. A contemporary example is the MAX programming environment developed at
IRCAM by Miller Puckette in the 1980s. MAX has generated enthusiasm from thousands
of artists who use it as a base for creating audiovisual software and installations. The
same way the graphical user interfaces (GUIs) opened up computing for millions of people,
alternative programming environments will continue to enable new generations of artists
working with software.

Software Expressions

When computer programs execute, they are dynamic processes rather than static texts
on the screen. Core expressions of software including dynamic form, gesture, behavior,
simulation, self-organization, and adaptation emerge from these processes. These and
other basic expressions are the fundamentals on which more complex ideas and experi-
ences are conveyed. Each expression is discussed below and illustrated with an exam-
ple from the Aesthetics & Computation Group at the Massachusetts Institute of Technology.
These examples were created by hybrid artist/programmers from 1998 – 2001 and provide
clear demonstrations of software expressions.

Dynamic Form
Dynamic form is form that changes in time. If this form reacts to stimuli, it is responsive.
Scratch by Jared Schiffman (Figure 1) demonstrates basic qualities of dynamic form. In
this software, the position of a controllable circle continuously affects the contour of each
visual element. Scratch augments the visual communication of the form by adding layers
of movement and fluid response. In general, form can respond to any signal from the
environment including common input devices such as a mouse, microphone, and video
camera to more exotic devices such as radiation sensors and sonar.

Fig. 1: Jared Schiffman: Scratch Fig. 2: Golan Levin: AVES

177Programming Media

Gesture
Gesture is a critical aspect of every continuous medium and software has the ability to
convey and interpret gesture. The AVES software by Golan Levin (Figure 2) is a group
of applications that amplify hand gestures by processing their data as sound and image.
One application maps the structure of each gesture into sounds that reflect its degree
of curvature. Another layers gestures to create gradual sound textures that activate and
combine with the presence of the cursor. Interpreting gestures is more complex, but opens
new opportunities for engaging interaction. Handwriting recognition software is one appli-
cation of gesture interpretation. Some installations and video games use a more basic
form of gesture recognition to allow people to direct action with complex motions.

Behavior
Behavior is movement with the appearance of intent. Combining simple behaviors can
create personality or disposition. Behavior can be created by intuitively writing programs
or by implementing biological models. In the project Trundle (Figure 3), the physical object
has a program that determines how it should move when presented with stimuli in its
environment. Trundle searches the environment looking for people, but when it finds some-
one it attempts to flee. It is curious and timid. An array of sensors on Trundle’s body
continually monitors its immediate environment and sends signals to the micro-controller
that determines how the motors should turn. In general, behavior can be used to actively
engage the mind through personifying objects, developing characters, communicating
affect, and adding a layer of psychological interest to a piece of software.

Simulation
Simulated aspects of the physical world provide an easy access point for perceiving works
of software. Our senses have evolved to respond to the rules of the natural world. One
of the first computer games, Pong, was a highly abstracted simulation of tennis. Modern
engineering and scientific communities utilize models of reality as a basis for designing
physical objects and conducting research. The Floccus software by Golan Levin (Figure
4) creates a group of elegant lines, each a connected list of simulated springs. The undu-
lating movement created by this simple simulation generates awe in spectators when it
is combined with response. The lines stretch and contract according to force, mass, and
acceleration. In software, simulation can go beyond mimicking perspective, materials,
and physical laws—the processes of natural systems can be simulated as well.

Fig. 3: Casey Reas: Trundle Fig. 4: Golan Levin: Floccus

178 Casey Reas

Self-Organization
The ability for elements to self-organize makes possible the phenomena of emergence.
Structure emerges through the interactions of many autonomous processes. Valence by
Ben Fry (Figure 5), reads the text of a book word by word and spatially organizes it accord-
ing to a system of rules. A complex volume emerges from the relations of diverse words
in the text. Small changes to the rules of interaction make potentially large changes in
the processed visualization.

Adaptation
Adapting is the ability to change. For software to adapt, it must have a representation
of itself and be aware of its context. The Anemone software by Ben Fry (Figure 6) is
able to monitor its density and prune its structure to maintain equilibrium. Anemone is
a visualization of website traffic and as the hours and days progress, the software removes
sections of its mass to allow for new sections to grow without obscuring legibility of the
information. Writing software that truly adapts to its context is a challenge and adaptive
expressions are rare. Using an interpreter, it is possible for a program to modify its own
program while it is running.

Programming

Although software is consistently utilized within the electronic arts, individuals choose
to construct their code in radically different ways from writing in low-level languages to
collaborating with programmers. Some artists use software as a tool for creating work
in other media. They use commercially available products for generating prints and videos
and for making rough sketches that are executed in analog media. Others collaborate
with professional programmers by creating specifications that are then implemented by
the programmers. Many other people use programming environments developed for design-
ers and artists. They create their work with scripting and visual programming environ-
ments such as Director, Flash, and MAX that make it easier for non-programmers to
construct software. The smallest group of artists working with software use program-
ming languages developed for professional programmers. They use general languages
like C, Java, and Perl and often develop their own custom tools for working within these
environments.
There is no correct way to work with software. It is an individual choice balancing control

Fig. 5: Ben Fry: Valence Fig. 6: Ben Fry: Anemone

179Programming Media

with simplicity. Mastering programming takes many years of hard work, but understand-
ing the basic principles of the medium is within everyone’s grasp. In my opinion, every artist
using software should be software literate. What does literacy mean within the context of
software? Alan Kay, an innovator in thinking about computation as a medium, has written:
The ability to "read" a medium means you can access materials and tools created by
others. The ability to "write" in a medium means you can generate materials and tools
for others. You must have both to be literate. In print writing, the tools you generate are
rhetorical; they demonstrate and convince. In computer writing, the tools you generate
are processes; they simulate and decide.
These processes that simulate and decide are the essence of software and they can only
be fully understood through constructing them.
Artists are increasing writing their own software. With the growth of the web, the popu-
larity of scripting environments like Flash, and the falling price of hardware, many more
artists are exploring programming. The area of audiovisual programming is an excellent
example of this trend. Small software companies like Cycling ’74, the developer of Jitter,
are very responsive to their community of artists and foster the development of enabling
tools. Their Jitter tool is a sophisticated library of visual structures for integrating image
with sound. Many artists have moved beyond relying on developers for their tools. The
Pink Twins, a duo of musician/programmers from Helsinki, have created Framestein, video
processing software that links to PD, open source real-time software for performance.
The German artist collective Meso has gone even further with vvvv, an ambitious library
of tools for real-time video synthesis. Some artists develop software tools for themselves
and after a period of refinement, choose to release it to the community.

Synthesis

Over the last thirty years, artists have created innovative work with the aid of the soft-
ware medium, but they have explored only a small range of the conceptual possibilities.
Historically, programming languages and environments encouraged a specific method-
ology that did not engage the majority of artists who were interested in creating inter-
active and programmatic work. New tools are emerging that encourage artists to begin
working directly with the software medium. The proliferation of software literacy among
artists will increase the sophisticated use of software and contribute to new forms of
software materials and development environments. These materials and environments
have the potential to open the creation of software to an even larger creative and criti-
cal community.

1 There are exceptional programming languages called “visual programming languages” that allow
structures to be defined with graphic symbols.

Abelson, Harold, Gerald Sussman, and Julie Sussman. Structure and Interpretation of Computer Programs.
MIT Press, Cambridge, MA. 1985

Ascott, Roy. “Moist Ontology.” Published in The Art of Programming. Sonics Acts Press, Amsterdam. 2002

Cuba, Larry. “Calculated Movements.” Published in Prix Ars Electronica Edition ’87: Meisterwerke der
Computerkunst. Verlag H.S. Sauer. 1987

Kay, Alan. “User Interface: A Personal View” in The Art of Human-Computer Interface Design,
edited by Brenda Laurel Addison-Wesley Publishing Company, Reading MA. 1989.

Krueger, Myron. “Responsive Environments.” Published in Multimedia, From Wagner to Virtual Reality.
Edited by Randall Packer and Ken Jordan. W.W Norton & Company, Inc., New York. 2001

