
WEB STALKER SEEK AARON
Reflections on Digital Arts, Codes and Coders

Erkki Huhtamo

“[A]ny notion of software leads us to reconsider our historical notions of art.”
Jack Burnham, “Notes on art and information processing”, in the catalogue to the Software exhibition (1970)

1.

The mainstream of computing has evolved towards hiding the code. While producing
and reading code was an everyday activity for early computer users—scientists, engi-
neers, operators and even artists—the presence of the code has become more and more
obscure, hidden behind the facade of the interface. Interfacing humans and computers
in a “user-friendly” fashion has been one of the guidelines of the digital culture since the
late 60s. For Nicholas Negroponte, writing in 1969, the real task was to teach the computer
to understand humans, not vice versa: “A designer, when addressing a machine, must
not be forced to resort to machine-oriented codes. And in spite of computational effi-
ciency, a paradigm for fruitful conversations must be machines that can speak and respond
to a natural language”.1 The effort of creating “seamless” and “intimate” human-
computer user interfaces became almost a definition of progressive computer culture,
expanding from specialists to general users. From Xerox Star to the Apple Macintosh
desktop and on to its bastard son, the Microsoft Windows, generations of users were
taught to ignore the inner workings of the “box”. They dealt with software packages that
opened their metaphor-filled offerings on the desktop by a mouseclick. The users saw
icons of tools and trash cans, but no strings of zeros and ones—the program codes that
actually power the whole system.
While the use of the computer has spread to all imaginable fields, direct access to the
code and coding has remained a domain for specialists, from computer scientists and
professional programmers to hackers and builders of game engines. Mac users and even
most Windows users rarely see even a glimpse of code. Even the brief revival of coding
as a normal occupation for the general computer user as a result of the introduction of
HTML was soon obliterated by an avalanche of easy-to-use automated webpage author-
ing software. While this development can be justified by claiming that the computer is
just an intermediary, a tool or a medium, and not a goal in itself, there is ample room for
counter-arguments. The computer’s constantly expanding role as a universal machine power-
ing innumerable applications and systems worldwide makes the invisibility of its workings
alarming. Corporate and governmental coders (not to forget code breakers), as well as
pranksters, cybercriminals and terrorists are monitoring and interfering with “innocent”
computer use through the Internet. Lacking knowledge of programming, the users can
only respond by subscribing to more corporate services or installing commercially marketed
software packages. Yet both the core of the problem and the nature of the counter-meas-
ures remain vague. It has also been argued that merely using a pre-existing commercial
software package restricts the user’s freedom of expression, forcing him/her unknowingly
to adapt to a role envisaged by the corporate planners.2 John Berger’s famous slogan,
“every image embodies a way of seeing”, could perhaps be modified to “every software

110 Erkki Huhtamo

111WEB STALKER SEEK AARON

embodies a way of using”.3 Gaining access to computer code, understanding its
“message” and being able to use it for one’s own means are political, as well as social
and economic issues. They are deeply intertwined with the dynamics of power and knowl-
edge in contemporary society.
Against this background it is extremely interesting to note the recent emphasis on coding
within the field of the digital arts. This interest has manifested itself in various forms, partic-
ularly in the emergence of the discourse on “software art”.4 In recent times we have
witnessed the appearance of artworks that modify the look and functioning of commer-
cial software applications from web browsers to game worlds, introducing features that
may be interpreted by users as formal interventions, disturbing pranks, ideological subver-
sions or simply as technical bugs. The famous Web Stalker (I/O/D, 1997-) is a web browser
that displays control codes and link structures instead of the usual graphical interface.
Life_Sharing by 0100101110101101.ORG attacked the false openness of the web browser
by giving anybody permission to access its own hard disk with all its private files and
programs through the Internet.5 Other works use elements of computer code openly as
building blocks of their aesthetics, without disguising them as graphics, images and sounds.
Common to all these forms is the urge to question the prevailing conventions of computer
use. Tearing down the veil of “user-friendliness”, seen as a deception, the artists are giving
the users a glimpse behind the scenes, to the engine room (to use an anachronistic
metaphor). They themselves feel at ease in this engine room, using it as a laboratory,
hangout, toolkit and venue for art. What are the reasons behind this interest? Is it enough
to label it as an “inevitable” avantgarde of the digital culture? How will it relate to the
wider, perhaps even non-digital, cultural context? This essay provides some preliminary
answers to such questions by delving into the relationship between art, codes and coding
from a media-archaeological point of view.

2.

The earliest computer artists in the 1960s were all coders. There was no alternative. Each
work, whether graphics, animation or music, was necessarily the result of an unique act
of writing computer code. As if foreshadowing the recent claims for “software art”, some
pioneers, like Michael L. Noll and the members of the Japanese Computer Technique Group
(CTG), openly stated that the true work of art was the generating program itself rather
than the computer-produced output.6 Most of the early work on computer graphics and
music took a formalist path, exploring issues like the possibilities of generative grammars
and the relationship between rule-based behaviour and randomness. This state of things
is aptly mirrored by the diagram-dotted pages of Jasia Reichardt’s early overview, The
Computer in Art (1971).7 Pioneers of computer graphics like Frieder Nake described their
activity as formal “visual research”, deliberately segregated from any social or political
concerns. They found inspiration from cybernetics, Claude Shannon’s information theory
and the exact mathematical aesthetics of theorists like Max Bense.8 Bense excluded
the role of subjective perception from his aesthetic system and based it on mathematical
equations that emphasized the universal rather than the particular, the rational rather than
the irrational (identified with the subjective art impulse), the abstract rather than the repre-
sentational. Although random operations were often used by the early artist-programmers,
the computer was considered mainly a “tool”: it was expected to execute a program writ-
ten beforehand.
This situation can be explained both by the state of the technology and the institutional
context. In the 1960s computers were mostly available at governmental and corporate
institutions. They were used primarily for statistical calculations, which emphasized the

112 Erkki Huhtamo

act of programming in the form of batch-processing. Although the early artists and
composers began to “bend” the technology to other kinds of uses, they were forced to
accommodate themselves to the roles that had been established in the non-artistic “main-
frame” culture: working within a dedicated institution, the artists created programs and
then waited until they had been executed by the computer. They were members of a small
elite, living on the fringe of a larger technical and institutional elite, exploring a powerful
means of expression in its infancy. However, the nature of computing was constantly chang-
ing as a result of innovations like new interfaces, the idea of time-sharing, and the creation
of the first programming languages meant for creative purposes. BEFLIX, written by
computer scientist Kenneth Knowlton at Bell Labs, was applied to groundbreaking computer
graphics and animation by artists Stan Vanderbeek and Lillian Schwartz, working in collab-
oration with Knowlton. Equally interesting was the appearance of the program ART 1 created
by university professors Katherine Nash and Richard H. Williams and meant as a tool for
artists interested in using the computer without having the theoretical and technical skills
to program. Criticized at the time for considering the artist “as a specialist with pre-defined
professional needs”, it was, however, an early pointer towards the parting of ways between
the creators of “soft” digital art and those involved in writing algorithms.9

The proliferation of art using pre-existing software tools such as Photoshop or Maya has
not meant the disappearance of the activity of creating original algorithms. Many of the
most rigorous digital art projects have been created by artists who either write software
for themselves or work in close collaboration with a programmer. Prominent examples
of the first are Myron Krueger, Harold Cohen and David Rokeby, while figures like Jeffrey
Shaw (in collaboration with Gideon May and Bernt Lintermann) and Rafael Lozano-Hemmer
(with Will Bauer) represent the second type. In some cases, like that of Christa Sommerer
and Laurent Mignonneau, separating programming from other aspects of creation is almost
impossible.10 Pioneers like Krueger, Cohen and Rokeby have spent years, even decades,
writing program code to refine their increasingly sophisticated systems. The artworks
these artists have exhibited over the years may have had own identities, but they can
also be characterized as “materializations” of these systems, documenting their state of
development. The code provides the core of Krueger’s Videoplace as well as Rokeby’s
Very Nervous System and Giver of Names.11 Arguably the most rigorous and long-term
effort to use original programming as a means of creating an evolving art project has
been Harold Cohen’s AARON, continuously under development since the early 1970s.12

AARON is an AI-based computer program, an expert system that creates paintings and
drawings. Over the past thirty years, different output devices have been used, from a
drawing “turtle” moving on paper placed on the floor to complex painting machines and

Harold Cohen: Clarissa Harold Cohen: Machine

Harold Cohen: Computer ©
 P

eg
gy

 C
oh

en

113WEB STALKER SEEK AARON

more recently to a software application automatically creating pictures on the desktop.
AARON can be characterized as a semi-autonomous creature. Its works are based on
the complex rules defined by Cohen, but it also has a considerable amount of autonomy
from composition to coloring. It is significant that Cohen has not made AARON’s code
public. The different stages of the program have not even been systematically preserved,
which is why the code’s development can only be deciphered indirectly, as reflected in
AARON’s numerous drawings and paintings.13 Although it is a major creative effort, Cohen
never considered the code as the artwork proper. Rather, it can be likened to the skills
and techniques accumulated by a human artist during his lifespan. What will remain are
the paintings, the material traces of a lifework. In this sense Cohen, painter by educa-
tion, resorts to a conventional model of the creation and preservation art. However,
AARON’s most recent manifestation, the software application available as freeware on
the Internet, could point in a more radical direction.14 Instead of remaining Cohen’s own
cybernetic extension, AARON has been given a degree of independence from its creator.
However, while becoming a software application on anybody’s desktop, AARON’s devel-
opment has also stopped. Although it can keep on producing different paintings
endlessly, it does not have a facility to learn other routines. Moved to the desktop AARON-
certainly immortalizes Cohen’s achievement, but it also turns into a cybernetic zombie.
Releasing its source code would give it a chance to develop further by means of collec-
tive programming efforts through the Internet.15

3.

The advocates of “software art” emphasize the primacy of the code as the main creative
achievement and demand an un-obstructed presence and role for it in the artwork. Accord-
ing to the statement of the first software art competition jury at the Transmediale 01, “soft-
ware art is opposed to the notion of software as a tool”.16 For the jury, software art has

114 Erkki Huhtamo

Anne-Marie Schleiner: Velvet Strike
From http://www.opensorcery.net/velvet-strike/

Anne-Marie Schleiner: Velvet Strike
From http://www.opensorcery.net/velvet-strike/

many faces: “it could be algorithms as an end to themselves, it could subvert perceived
paradigms of computer software or create new ones, it could do something interesting
or disrupting with your computer, it could be creative writing, it could be science.” In
another text Florian Cramer and Ulrike Gabriel (who were among the jury members) write:
“Software art means a shift of the artist’s view from displays to the creation of systems
and processes themselves; this is not covered by the concept of ‘media’”.17 For these
writers the principal “sin” media art has committed seems to be its excessive attention
to interface design. For the software purist, the creation of detailed immersive environ-
ments and elaborate multisensory interfaces is in itself an act of mystification. Works that
involve the participants both bodily and emotionally seduce them, instead of making them
aware of the true nature of the system, hidden “behind the facade”.
It is most interesting that interactive systems that in the not-so-distant past were seen
as an empowering and critical alternative to “passivating” media experiences like
watching television, have now become the target for criticism. This has to do with the
rapid acceptance of interactivity and its adoption into the mainstream of digital culture.
If interactivity was once seen as a gesture that questioned the prevailing logic of media,
it has now been normalized, added to the internal cultural repertory. However, the recent
criticism does not seem to be addressed to interactivity per se; rather, it addresses the
way interactivity has been packaged and marketed, institutionalized and commodified.
In fields like electronic gaming the near realtime interaction between the user and the
game software/hardware complex has been claimed to lead to the “automation” of the
action/reaction mechanism. Immersion into rapidly changing and emotionally engaging
gameworlds leaves little time for reflecting on the algorithmic basis of the experience.18

For the gamer it is as if the system leaves only the phenomenological experience of the
gameworld. The appearance of a phenomenon like game patch art is interesting in that
it uses programming to directly address such mechanisms of identification. As a recent
example, Anne-Marie Schleiner’s Velvet-Strike project (2002) invites people to create
digital graffiti on the walls of Counter-Strike, the popular network shooter game about
terrorism.19 Situated somewhere between “textual poaching” gaming subcultures and crit-
ical software art, game patch art functions as an ambiguous counter-discourse to commer-
cial game culture, true to the legacy of hackerism.
It should also be pointed out that media art from recent years has shown signs of self-
reflectivity and a growing critical awareness of its own position vis a vis commercial and
institutional applications. Works like Maurice Benayoun’s and Jean-Baptiste Barrière’s
World Skin (1998) or Ken Feingold’s That Sinking Feeling (2002) are far from naive cele-

115WEB STALKER SEEK AARON

brations of the pleasures of the interface. While still offering memorable interactive expe-
riences they at the same time disturb the bond with the user.20 Both works create ambigu-
ous situations where the seductive potential is constantly undermined by discrepant (World
Skin) or deliberately “malfunctioning” (That Sinking Feeling) elements. Although neither
work deals primarily with computer code, its role has by no means ignored. The func-
tioning of the algorithmic base of these works may not have been highlighted, but its role
is interconnected with the issues these works raise, from the role of media and the
politics of simulation to social-psychology and the construction of identity. In their own
ways they demonstrate that singling out the code for exclusive scrutiny at the expense
of everything else may not be the right way to go in an integrated digital culture, where
technical, ideological and cultural codes are no longer separable from each other.

4.

It is interesting to note that the software art purists have already begun to trace their
own genealogy. This proves the well-known fact that history is mainly written to justify
the present. A major formative event in the pre-history of software art has been located
in the Software exhibition, curated by Jack Burnham for the Jewish Museum in New York
in 1970. This technically catastrophic and until now largely ignored event has been iden-
tified as the nexus at which the efforts to explore the creative potential of information
technology met conceptual art and Burnham’s own interest in structuralist analysis.21 In
his introduction to the exhibition catalogue Burnham made it clear that Software was not
a normal art exhibition. Rather, it displayed exhibits that dealt with “conceptual and process
relationships”. One of the purposes was “to undermine normal perceptual expectations
and habits which viewers bring to an art exhibition”.22 The visitors were supposed to inter-
act with various technological devices, without being asked to consider them as
artworks. The most noted exhibit was SEEK, created by Nicholas Negroponte and his
colleagues at MIT’s Architectural Machine Group. It was another AI-inspired program-
ming effort that hardly reached its goals, except on a metaphorical level: living gerbils
had been placed in a glass-caged arena with aluminium building blocks, and a computer-
controlled robot arm operating from above. The system, engaged in arranging the blocks
according to pre-programmed schemes, was supposed to respond “intelligently” to the
“noise” created by the gerbils, the sounds of their paws on the blocks, etc.23

For the software art advocates, the most inspiring exhibit seems to be Labyrinth, an early
version of Ted Nelson’s hypertext displayed as a bare branching structure. Several other
exhibits interfaced visitors with technological apparatus making few efforts to weave fictions
or elaborate “stage-sets” around them. In Software, Burnham drew a connection between
the use of computing technology and conceptual art, which made him include non-tech-
nological pieces from artists like John Baldessari, Lawrence Weiner and Douglas Huebler.
In Burnham’s view all these forms shared the tendency to move away from art objects and
to investigate linguistic structures and forms of information exchange underlying other forms
of expression. This was also in unison with Burnham’s simultaneous effort to reveal the
mythical structures underlying the traditions of Western art.25 Conceptual art, interpreted
broadly to include also John Cage’s method of composition, the series of instructions for
imaginary events composed by the Fluxus artists and some forms of lettrist poetry, certainly
provide one possible background against which to assess the role of code in software art.
However, one might also refer to the field of structural and materialist film and the ideol-
ogy of “anti-illusionism” in the film culture of the late 1960s and early 70s. Attacking the
illusionism of conventional narrative cinema, filmmakers began to deconstruct the cine-
matic apparatus in its constituent elements. They emphasized the materiality of film, includ-

116 Erkki Huhtamo

ing sprocket holes, frames, emulsions, scratches
and dirt. Some filmmakers, including Hollis Framp-
ton, Michael Snow and the Croatian Ladislav
Galeta, used (quasi-)generative principles to struc-
ture their films. In its most extreme form, filmmakers
abandoned film altogether, staging events that
merely highlighted the basic elements of the cine-
matic apparatus, the light beam from the projec-
tor, the screen, the darkness of the auditorium.
Writing in the seminal Structural Film Anthology
(1976), Peter Gidal defined Structural / Material-
ist films as “at once object and procedure”.25 In
another text he stated: “A film is materialist if it does
not cover its apparatus of illusionism. Thus it is not
a matter of anti-illusionism pure and simple, uncov-
ered truth, but rather, a constant procedural work
against the attempts at producing an illusionist
continuum’s hegemony.”26 In other words, mate-
rialist film was not as much a purification ritual as
a constant struggle against the hegemonic forces
resorting to illusionism.

5.

The struggles of the structural and materialist film movement could perhaps be compared
with the efforts the software artists are currently making to scratch the slick corporate
facades of cyberculture, metaphorically manifested in the deceptive openness and the
pretended democracy of the graphical user interface.27 Yet comparisons across time are
risky. Drawing a parallel between a 1960s computer generated picture consisting of dense
arrays of ASCII characters and a piece of “ASCII art” from the late 1990s is only valid
in a limited sense. The student hackers that created Spacewar, considered the first
computer game, have little in common with today’s commercial game developers and
even with game patch artists. Similarly, the programming efforts of the computer graph-
ics pioneers of the 1960s cannot be directly compared with the software art of the early
21st century, because of the widely different cultural contexts. The discourse on soft-
ware art has emerged in a situation in which digital culture has already had time to create
a history and a memory. During its first half century, digital computing has gone through
a number of different stages that have progressively re-defined the meanings of comput-
ing in warfare, administration, society, economy and culture. Issues like artificial intelli-
gence, virtual reality, agents and avatars, A-Life, GUI, physical computing and digital
networking are all elements in an evolving fabric that changes shape depending on time
and place and the position and identity of the observer. Last but not least, software art
is in a position to profit from the experiences of the net art pioneers.
Digital art has for some time shown signs of a growing self-consciousness in relation to
the history of digital technology. Yet the recent interest in AI among artists does not mean
an artistic revival of the classic artificial intelligence research. It is not a simple homage
either. Projects like David Rokeby’s A Giver of Names, Kenneth Rinaldo’s Autopoiesis
and Ken Feingold’s talking and responding puppet heads are examples of meta-art that
engages in a dialogue with the cultural representations of AI (including, in Feingold’s
case, Joseph Weizenbaum’s quasi-intelligent conversation program ELIZA), while pursu-

SEEK by Nicholas Negroponte and the
Architecture Machine Group at MIT,
1969–70. Shown at “Software”, Jewish
Museum, New York, 1970.

117WEB STALKER SEEK AARON

ing at the same time other intellectual and ideological goals. Perhaps it is not wrong to
say that there has been a cultural demand for a phenomenon like software art, just like
there was for the appearance of structural / materialist film, which was “called for” by
a conglomeration of conflicting cultural forces, from the increasing uniformity and untouch-
ability of commercial film production to the impact of counter-cultural movements, the
emergence of decontructionist philosophy and the “dematerialization of the art object”.
The structural / materialist film movement emerged as a critical position that questioned
the prevailing audiovisual hegemony, demanding an approach that highlighted the
“primitives” of the filmic medium in dynamic interplay with its application to narrative and
metamorphic purposes. In its anti-illusionistic fervor it evoked the idea of a modernist
reaction, but not in a simple revivalist fashion.
The claims and prognoses made by the software art advocates also have a certain neo-
modernist flavor. Emphasizing the centrality of the code and the algorithmic approach means
positing a “hard core”, often felt to have been lost in the postmodern world. Indeed, there
are “small but uninfluential” (to brutally appropriate an expression from Vuc Cosic) groups,
such as the one dedicated to exploring the aesthetics of the generative code (Geoff Cox,
Alec McLean, Adrian Ward, etc.), that fulfill many of the criteria for classical avantgarde
movements.28 Florian Cramer has identified the group’s activities, which include poetry
readings in Perl program code, as “software formalism”.29 On the other hand there are
approaches that emphasize the cultural and ideological underpinnings of computer program-
ming. For groups like the British Mongrel and I/O/D (creator of Web Stalker), digital code
cannot be separated from the operations of ideology manifested on the Internet and else-
where. Their actions and projects are much more difficult to fit into a modernist strait-
jacket. The situation becomes even more difficult in the case of the independent artist-
activists operating on the no-(wo)man’s land between popular cultural forms like
gaming, various forms of net activism (including cyber-feminism) and theoretical
approaches. Appropriation, pastiche, bricolage and other postmodernist tricks are still
among their favourite tools.
If the digital arts are going to make a difference in the media culture of the 21st century,
it is clear that they have to shed their veil of innocence. They have to face the prob-
lematic, conflicting realities of cyberculture. While doing so, they need to scrutinize and
make public their own internal workings, as well as their relationship to the systems of
power, control and commerce that envelop them, infiltrate them, co-opt them and influ-
ence their public image, whether welcome or not. Just as science and technology can
never be free from the constraints imposed upon them by economy, culture and
politics, the digital arts cannot be “pure” and “free”, even when purporting to focus on
the quest for formal, mathematical, algorithmic beauty. Researching the aesthetics of
digital grammars and exploring the workings of the code are important goals; yet getting
the findings out from the isolated engine room and into the consciousness of the cyber
citizen—also in the role of the cyberart lover—is quite another matter.

1 Nicholas Negroponte: The Architecture Machine. Cambridge, Mass.: The MIT Press, 1970, 9.
2 See Matthew Fuller’s penetrating analysis of Microsoft Word, “It looks like you’re writing a letter:

Microsoft Word”, available on-line at www.axia.demon.co.uk/wordtext.html.
3 John Berger et. al.: Ways of Seeing. London and Harmondsworth, Middlesex:

BBC and Penguin Books, 1972, 10.
4 “Nodes” for the discourse on “software art” have been the software art award competition organized by the

Transmediale in Berlin since 2001, the website www.runme.org and the www.readme.org events. The
protagonists active through these and other channels come from different countries, but mainly from Europe.

118 Erkki Huhtamo

5 See www.walkerart.org/gallery9/lifesharing/. During the Venice Biennale 2001, invited to participate in the
Slovenian Pavillion, 0100101110101101.ORG got attention by announcing the creation and distribution
of a festival (computer) virus. With this conceptual act the group in a way confirmed the notion of the
Transmediale 01 software art jury according to which “[c]omputer viruses might be seen as a critical form
of software art ...” (transmediale 01, jury statement, www.transmediale.de/01/en/s_juryStatement.htm).

6 Cynthia Goodman: Digital Visions. Computers and Art. New York and Syracuse: Harry N. Abrams &
Everson Museum of Art, 1987, 24.

7 Jasia Reichardt: The Computer in Art, London: Studio Vista, 1971. See page 81 for a discussion of the
Computer Technique Group and its belief that [i]t is the program itself that is the work of art”.

8 See Herbert W. Franke: Computer Graphics Computer Art, pp 107-108. Phaidon, New York, 1971
Another influential theorist was Abraham Moles.

9 Jonathan Benthall: “Science and Technology” in Art Today, p 52. Praeger Publishers, New York, 1972.
10 It is well known that Mignonneau is responsible for the programming in a technical sense, but their

numerous installations are the product of a very close collaboration, which makes separating their
creative inputs next to impossible.

11 Rokeby’s Very Nervous System is also available as a commercial software package known as SVNS. It
has been used by numerous other artists as well.

12 See Pamela McCorduck: AARON’s Code, W.H. Freeman, New York,1990.
13 In a recent e-mail message to the author Cohen explained: “And, as with any other serious artist, what

isn’t carried forward is abandoned. So the answer to one of your questions is that I don’t keep old
versions of the program hanging around very long. Actually I wouldn’t be able to use them even if I did;
they were written for different machines and stored on media and devices that are no longer in use. It
would probably be easier to reconstruct the early versions from memory than to try to resurrect the old
media: not that I would bother to try.” (private e-mail communication, May 6, 2003.)

14 Available from www.kurzweilcyberart.com/. The site also contain material about AARON’s history,
including a film clip demonstrating a painting machine in operation. It might also be claimed that becoming
as desktop application, essentially a screensaver, has trivialized AARON. This impression may have to do
with the speed of current computers. AARON somehow seems to create its paintings too quickly, too
effortlessly. This is naturally just a subjective impression that has nothing to do with the sophistication of
the code.

15 In discussions Cohen often refers to the complexity of the program, which has been in the making for
three decades. Although it has been turned into freeware, Cohen obviously still sees AARON as his own
creation as an artist. Releasing the source code would compromise this role, but it would also lead to
much more radical collective creation.

16 www.transmediale.de/01/en/s_juryStatement.htm
17 Florian Cramer and Ulrike Gabriel: “Software Art”, available on-line at

www.netzliteratur.net/cramer/software_art_-_transmediale.html.
18 Eddo Stern has pointed out how artefacts, programming errors and network malfunctions in massively

multiplayer roleplaying games can occasionally make the player aware of the digital architecture of the
game. See Stern’s article in Mariosophy: The Culture of Electronic Games, edited by Erkki Huhtamo
and Sonja Kangas, The University Press of Finland, Helsinki, 2002 (in Finnish).

19 See Anne-Marie Schleiner: “Velvet-Strike: War Times and Reality Games”,
www.noemalab.com/sections/ideas/ideas_articles/schleiner_velvet_strike.html. Schleiner has also
curated important game patch related art events.

20 In the case of World Skin this happens by using deliberately artificial frozen 2D images within a navigable
3D space, in the case of That Sinking Feeling by having an animatronic puppet head deliberately
misunderstand the visitor’s speech, showing traits of schizophrenic behaviour that could also be attributed
to malfunctioning technology.

21 See Edward A. Shanken: The House That Jack Built: Jack Burnham’s Concept of ‘Software’ as a
Metaphor for Art, available online at www.duke.edu/~giftwrap/House.html.

22 Jack Burnham, “Notes on art and information processing”, in Software. Information technology: its new
meaning for art (catalogue) p 12, The Jewish Museum, New York,1970.

23 SEEK gained notoriety because several of the gerbils reportedly died during the exhibition. The gerbils,
of course, were stand-ins for human beings operating in a technologically saturated environment.

24 See Jack Burnham: The Structure of Art. George Brasiller, New York,1971.
25 Structural Film Anthology, edited by Peter Gidal, London: BFI, 1976, 14.
26 Peter Gidal: Materialist Film, London: Routledge, 1989, 17.
27 A useful book for developing this connection further is Malcolm Le Grice: Experimental Cinema in the

Digital Age, London: British Film Institute, 2001. Le Grice was an active protagonist in the structural film
movement.

28 See Geoff Cox, Alex McLean and Adrian Ward: The Aesthetics of Generative Code, available on-line at
http://generative.net/papers/aesthetics/.

29 Florian Cramer: “Concepts, Notations, Software, Art”, available on-line at
www.netzliteratur.net/cramer/concepts_notations_software_art.html.

