
291Code and Music: Technology and Creativity in Composing

Since the first singing of “Daisy” echoed through the halls of Bell Labo-
ratories from their mainframe, computers and their software code have become an inte-
gral part of how music is created and, for better or worse, distributed. In today's world
there is almost no area of music that has not been touched by technology. As Gerfried
Stocker has observed, “Artistic expression no longer arises solely as the result of artists’
talent and mastery of their craft, rather, program codes describe parameters and processes
in accordance with dynamic visual, and sound environments are generated via computer
… serious and popular alike.” 

(Ars Electronica Festival, Press Release, Linz, March 25, 2003.)

The symposium has asked me to consider the role of code in music. Since this is a daunt-
ing task, I will examine briefly how code touches and even shapes certain aspects of
music composition, and pose some questions for exploration. We cannot put the genie
back into the bottle, nor do we wish to, but we should think about the way code has
been fused into art and music to free our own creativity.
A specific question was posed recently in an Ars Electronica press release this Spring:
“How do software and digital codes impact the essence and identity of media art as ‘art
created out of code’, that is, as a generative and processual art form that has devel-
oped from and consists of algorithmic and computational processes?” This question is
very much on target.
Some of the larger changes have occurred in algorithmic composition. Although lower
level programming environments based on Lisp, C and C++ still exist and are still commonly
used, such as Common Lisp Music (CLM), Csound, and the Synthesis ToolKit in C++
(STK), they are mainly the playground for academic institutions that cater to research
and the further development of the genre. Only within the last several years has this begun
to change. The computing power that was once only available to these institutions a mere
ten years ago has dramatically changed. Today the typical home computer is powerful
enough to run just about any programming environment with room to spare. This has
unlocked a whole new market of potential users.
Along with less expensive and faster computers, the advent of higher level GUI
programming environments such as PD and in particular MAX/MSP, have allowed more
people access to computer music than ever before. Since it is no longer only the realm
of academics, the mainstream now has a chance to enter the domain of computer music.
Opening the doors to the more mainstream also yields the side benefit of innovations
developing more quickly. Composers, academic and non-academic alike, who once hesi-
tated to attempt to create computer music, due in part to lower level languages, are now
able to let their imaginations soar in an entirely new area of music. This has profoundly
changed the musical landscape.
For example, about nine or ten years ago when I wanted to write algorithmic composi-
tion I mainly used Rick Taube’s Stella program which was based on Lisp. It was a power-
ful program tailor-made for this type of composition that was relatively easy to learn for

Code and Music: Technology 
and Creativity in Composing

Jonathan Norton



292 Jonathan Norton

anyone with knowledge of Lisp. MAX was available at that time, but its capabilities were
limited as a more general programming environment. Both Stella and MAX, however, were
limited because they could only use MIDI. When I wanted to write music that entailed
computer generated and manipulated audio I would have to switch to a program such
as CLM. Yet, Stella and CLM environments still required writing many lines of computer
code that ran on the NeXT computer. Today, if I want to create this type of music, I normally
use MAX/MSP, which now combines the qualities of algorithmic composition and audio
together in one package, and it runs on my laptop.
With the help of faster computers and GUI programming environments, another area of
rapid growth is in the field of musical controllers and interfaces. In fact, it has become
so popular in the past few years that a new international conference has sprung up to
address the topic—the New Interfaces for Musical Expression conference (NIME) held
at McGill University in Montreal, Canada this year.
Many of these controllers are cross-pollinations from different fields that take objects from
their normally intended environment and use them in a novel way. BioControl’s BioMuse
was one of the first systems to employ bioelectric transdermal electrodes—normally used
for biofeedback and medical therapy—for musical applications. The system could meas-
ure electromyograms (muscle movement), electrooculograms (eye movement), electro-
cardiograms (heart), and electroencephalograms (brain waves) from eight different
sensors at once. While this was great at the time, its application was pretty much limited
to academic use and composition because of lack of knowledge among and, thus, access
to those outside of academic and medical circles.
More recently, Infusion Systems’ I-Cube and similar products have entered the scene.
The I-Cube system does not work with bioelectric sensors like the BioMuse, but has a
more flexible design that allows the use of up to 32 sensors at once. It also features a
wider array of sensors that measure such parameters as bend, touch, light, tilt, magnetic
field, orientation, temperature and pressure. An important advantage and time saver of
these systems is that they automatically translate the raw sensor information into MIDI
data. This in and of itself makes them much more user friendly. When combined with a
GUI programming environment they lend themselves well to reaching a larger popula-
tion due to this environment’s accessibility and ease of use.
Not only do the controllers and software code allow for more organic and evolving sound,
but they also allow for the sound to evolve in a real-time performance setting. This new
possibility was not available in the past or at least not as easily accessible. Previously,
in a live situation, sound had to be physically produced either by miking an instrument
or played from tape before it could be altered through EQ, filters, tape manipulation, or
the use of many outboard effect boxes. However, the sound source itself could not adapt.
Currently, the sounds themselves can be completely adaptive and the parameters that
affect them can be spontaneously produced on the command of the performer.
So, in the larger context of music with all of these advances in technology, how has the
position of the artists changed by their use of software? For traditional composers it means
that they no longer have to write music with pencil and paper only. While traditional pencil
and paper are still used, software has allowed them to create, audition and generate music
and musical scores faster, with more diversity, and in more directions than ever before.
Sequencer programs make it easier to audition different textures and arrangements before
committing oneself to them. Most of these programs also allow the integration of audio
files into the sequences, which further enhances the composer’s palette of possibilities
as never before. Notation programs, once learned, are also invaluable time savers. Entire
sections of music can be entered, altered, cut and pasted, transposed and checked for
range, all with relative ease. Once completed, the individual parts can be extracted and



293Code and Music: Technology and Creativity in Composing

printed automatically from the score. For orchestral scores and other large works, nota-
tion programs are worth their weight in gold.
For modern composers, the proliferation of software choices means that they have become
part composer and part programmer. In addition to digital audio, sequencer programs
can import a plethora of plug-ins for effects, sound manipulation, samplers and virtual
instruments, just to name a few. For composers who are not satisfied with the limita-
tions of existing programs and plug-ins, high and low level programming environments
are the tools of choice. This is the realm of algorithmic composition, acoustic models,
physical models, digital signal processing and unique controllers. Here, every parame-
ter and nuance of sound can be dictated and tailor made for specific situations, sonori-
ties and musical ideas. Of course this flexibility comes with a price. The more nuances
composers want to control, the deeper their understanding must be in terms of synthe-
sis techniques, acoustic modeling, digital signal processing, and how the parameters
of each affect one another.
For artists in other disciplines, software has allowed them to become composers and
vice versa. In the past, without software a person truly had to be a composer. In order
to write music, pencil and paper were needed to create a score and then shown to a
musician to be played. This required certain mastery at the very least of how to notate
music as well as knowledge of the capabilities and limitations of the instruments for which
the pieces were being written. Through the use of software, hardware and computer-
generated or computer-controlled sounds this is no longer the case. Most art in one form
or another can be translated into almost any other art form. An artist can take an image
of his/her art, be it a photograph, a drawing, or a form of video and, through a scanner
or video camera connected to translation software, map the pixel density or rate of move-
ment into raw MIDI data. This data in turn could be sent to a synthesizer or any other
sound source or programming environment to create sound. Another example would be
a sculptor who uses light, heat, touch or bend sensors attached to his/her sculpture to
generate raw MIDI data which is patched to a sound source. The possible combinations
are endless.
Conversely, a composer could take an existing composition or a live performance and
through the use of MIDI to video or audio to video converters create a graphic repre-
sentation of his/her music in real-time based on some predetermined parameter
mappings.
As I conclude, I come back to specific concerns with code and creativity. As stated above,
most modern composers and especially computer music composers have become part
composer and part programmer. Some people might say that such a composer’s music
is not musical, but most people will not argue about the music being a form of art. But
what about the code used to produce the music? With an increased reliance on comput-
ers and software is it possible to say that the code itself has become an art form in its
own right? If so, at what point does software stop being simply code and cross the line
into art? Do these rules change for different creators or do they stay the same across
the board? For example, if a computer programmer writes, say, an algorithm that gener-
ates music, is that program considered to be art? What if on the other hand a composer
writes the exact same algorithm? Is the composer’s program considered art and the
computer programmer’s program seen merely as code, as a means to the end product
of music, or are they seen on equal footing? Is either one considered art? Is a program
that has been labeled as art truly art or is it just merely because someone says, “This is
art?” Are there any concrete criteria on which to base such a decision on or is it merely
subjective? These are questions that move us toward the heart of the integration of tech-
nology and art.



Although I have only talked about code, technology and music composition, the concept
of code and music has many levels that will probably affect us all in the future. As I
mentioned in the beginning, computer technology and software have become an inte-
gral part not only of how music is created, but also how it is distributed. The current
controversy about the distribution of music and file swapping through the Internet involves
law, code and individual creation of art at an even broader level. Technology and code
that broaden the art of individual creativity, as I have discussed, also threaten to change
individuals' rights to their art.

Seit erstmals „Daisy, Daisy“ bei Bell Laboratories aus dem Großrechner
ertönte, sind Computer und Softwarecode zu einem bedeutenden Einflussfaktor bei der Schaf-
fung und Verbreitung von Musik geworden. Es gibt heute fast keinen Bereich der Musik, der
nicht von Technik beeinflusst wäre. Wie Gerfried Stocker ausführt, „[entsteht] künstlerischer
Ausdruck […] nicht mehr ausschließlich durch Können und Handwerk des Künstlers, sondern
über Programmcodes werden die Parameter und Prozesse beschrieben, entsprechend derer
vom Computer dynamische Bild- und Klangwelten generiert werden – … [in] Bereichen der
U- [ebenso wie der] E-Musik.“

(Ars Electronica, Presseaussendung, Linz, 25. März 2003)

Ich wurde gebeten, im Rahmen der Ars Electronica 2003 die Rolle von Code in der Musik
zu untersuchen. Dies stellt eine reizvolle Herausforderung dar und erlaubt mir, kurz die Berüh-
rungspunkte und Zusammenhänge zwischen Code und Musik darzulegen und abschließend
einige Fragen zu formulieren. Weder können noch wollen wir den Geist zurück in die Flasche
verbannen; wir sollten jedoch überlegen, wie Code Eingang in die Kunst und Musik gefun-
den und unserer Kreativität neue Impulse verliehen hat.
In einer Presseaussendung der Ars Electronica vom Frühjahr 2003 wurde folgende Frage
aufgeworfen: „Welche Rolle spielen Software und digitale Codes für das Wesen und die Iden-
tität von digitaler Medienkunst als einer ,Kunst aus Code‘, also einer generativen, aus compu-
tativen Prozessen entwickelten und entstehenden Kunst?“ Diese Frage berührt den Kern des
Problems.
Einige der umfassendsten Innovationen zeigen sich im Bereich der algorithmischen Kompo-
sition. Obwohl auf Lisp, C und C++ basierende Low-Level-Programmierumgebungen wie 
z. B. Common Lisp Music (CLM), Csound und die Synthesis ToolKit-Funktion von C++ (STK)
weiterhin häufig zum Einsatz kommen, werden sie hauptsächlich im akademischen Bereich
für Forschungszwecke und zur Weiterentwicklung des Genres verwendet. Geändert hat sich
dies erst in jüngster Zeit. Die Rechnerleistung hat sich dramatisch erhöht; während vor nur
zehn Jahren fast ausschließlich die oben erwähnten Institutionen ausreichend leistungsstarke

Code und Musik
Technik und Kreativität beim Komponieren

Jonathan Norton

294 Jonathan Norton


