
242

Vladimir Batagelj / Andrej Mrvar ||||||||||||

Pajek—Program for Analysis

and Visualization of Large Networks

|||||||||||

Pajek is a program for Windows for analysing and visualizing large
networks with some thousands or even millions of vertices. In the
Slovene language the word “pajek” means “spider.” The latest version
of Pajek is freely available for non-commercial use at its home page
http://vlado.fmf.uni-lj.si/pub/networks/pajek/

We started the development of Pajek in November 1996. Pajek is implemented in Delphi
(Pascal). Some procedures were contributed by Matjaz Zaversnik. The main motivation
for the development of Pajek was the observation that several sources of large networks
exist that are already in machine-readable form. Pajek is intended to provide tools for
analysing and visualizing such networks: collaboration networks, organic molecules in
chemistry, protein-receptor interaction networks, genealogies, Internet networks, citation
networks, diffusion (AIDS, news, innovations) networks, data-mining (2-mode networks),
etc. See also the collection of large networks at: http://vlado.fmf.uni-lj.si/pub/networks/data/
The design of Pajek is based on our previous experiences gained in the development
of graph data structure and the algorithm libraries Graph and X-graph, the collection of
network analysis and the visualization programs STRAN, RelCalc, Draw, Energ, and the
SGML-based graph description markup language NetML. The main goals in the design
of Pajek are:

• to support abstraction by (recursive) decomposition of a large network into several
smaller networks that can be treated further using more sophisticated methods;

• to provide the user with some powerful visualization tools;
• to implement a selection of efficient (subquadratic) algorithms for the analysis of large

networks.

With Pajek we can: find clusters (components, neighbourhoods of important vertices, cores,
etc.) in a network, extract vertices that belong to the same clusters and show them sepa-
rately, possibly with parts of the context (detailed local view), shrink vertices in clusters
and show relations among clusters (global view). Besides ordinary (directed, undirected,
mixed) networks Pajek also supports 2-mode networks (bipartite valued) graphs—networks
between two disjointed sets of vertices, and temporal networks (dynamic graphs—networks
changing over the course of time).

Data structures | | | | | | | | | |

In Pajek, analysis and visualization are performed using
6 data types:
• network (graph),
• partition (nominal or ordinal properties of vertices),
• vector (numerical properties of vertices),
• cluster (subset of vertices),
• permutation (reordering of vertices, ordinal properties),

and
• hierarchy (general tree structure on vertices).

243

Vladimir Batagelj / Andrej Mrvar ||||||||||||

We intend to extend this list with a support of multiple networks and partitions of lines.
The power of Pajek is based on several transformations that support different transitions
among these data structures. The menu structure of Pajek’s main window is also based
on these. Pajek’s main window uses a “calculator” paradigm with a list-accumulator for
each data type. The operations are performed on the currently active (selected) data and
return the results through accumulators. The procedures are available through the main
window menus. Frequently used sequences of operations can be defined as macros. This
also allows groups of users from different fields (social networks, chemistry, genealogy,
computer science, mathematics …) access to adaptations of Pajek for specific tasks.
Pajek also supports repetitive operations on a series of networks.

Algorithms | | | | | | | | | |

To support the design goals we implemented several algorithms known from the litera-
ture on the subject, but for some tasks, new and efficient algorithms suitable for deal-
ing with large networks had to be developed. They mainly provide different ways of iden-
tifying interesting substructures in a given network. To extend the range of Pajek, on very
large networks most basic operations work in-place (destroying the input network). In
Pajek, several known efficient algorithms are implemented, such as:
• simplifications and transformations: deleting loops, multiple edges, transforming

arcs to edges etc.;
• components: strong, weak, biconnected, symmetric;
• decompositions: symmetric-acyclic, hierarchical clustering;
• paths: shortest path(s), all paths between two vertices;
• flows: maximum flow between two selected vertices;
• neighborhood: k-neighbours;
• CPM—critical paths;
• social networks algorithms: centrality measures (see Figure 1), hubs and authori-

ties, measures of prestige, brokerage roles, structural holes, diffusion partitions;
• measures of dependencies among partitions/vectors: Cramer's V, Spearman rank

correlation coefficient, Pearson correlation coefficient, Rajski co-efficient;
• extracting subnetwork;
• shrinking clusters in network (generalized blockmodeling);
• reordering: topological ordering, Richards’ numbering, Murtagh’s seriation and

clumping algorithms, depth/breadth first search.

Figure 1: A zoom view of the main part of Internet
industries (collected by Valdis Krebs) 219 vertices,
631 edges. Each node in the network represents a
company that competes in the Internet industry,
1998 to 2001; red—content, blue—infrastructure,
yellow—commerce. Two companies are connected
with an edge if they have announced a joint
venture, strategic alliance or other partnership. The
vertex size is proportional to its betweenness.

244

Special algorithms | | | | | | | | | |

We also included in Pajek several algorithms resulting from our own research in analy-
sis of large networks.
• islands: If we represent a given or computed value of vertices/lines as a height of

vertices/lines and we immerse the network in water up to a selected level, we get
islands. Varying the level, we get different islands. Islands are a very general and effi-
cient approach to determine the “important” sub-networks in a given network.

• citation weights: Citation network analysis started in 1964 with the paper by Garfield
et al. In 1989 Hummon and Doreian proposed three indices.

• weights of arcs that provide us with an automatic way to identify the (most) impor-
tant part of the citation network. We developed algorithms to compute two of these
indices efficiently. See Figure 2.

• cores and generalized cores: The notion of core was introduced by Seidman in 1983.
Vertices belonging to a k-core have to be linked to at least k other vertices of the core.
A very efficient algorithm exists for determining cores. The notion of core can be
extended to other vertex functions and for several of them the corresponding cores
can be efficiently determined. See Figure 3.

• pattern searching: If a selected pattern determined by a given graph does not occur
frequently in a sparse network, the straightforward backtracking algorithm applied
for pattern searching quickly finds all appearances of the pattern even in the case
of very large networks. Pattern searching was successfully applied to searching for
patterns of atoms in molecula (carbon rings) and searching for re-linking marriages
in genealogies.

• triads: A triad is a subgraph on three given vertices. There are 16 types of triads. Several
network properties can be expressed in terms of their triadic spectrum—the distri-
bution of all their triads.

Figure 2: Main subnetwork at level 0.007
of the SOM (self organizing maps)
citation network (4470 vertices,
12731 arcs). The arc weights are
proportional to the number of different
source-sink paths passing through
the arc.

Figure 3: pS-core at level 46 of the collaboration
network (7343 vertices, 11898 edges, edge
weight counts the number of common works) in
the field of computational geometry.

245

Vladimir Batagelj / Andrej Mrvar ||||||||||||

• triangular networks: We can assign to a given graph a triangular network in which
every line of the original graph receives as its weight the number of triangles that contain
it. Triangular weights, combined with islands, provide us with a very efficient way of
identifying dense parts of a graph.

• generating large random networks: Pajek contains very efficient algorithms for
generating random networks of the Erdös-Renyi type (undirected, directed, acyclic,
undirected bipartite, directed bipartite, acyclic bipartite, 2-mode, and others). It also
provides some procedures for generating random scale free networks.

• normalizations: The normalization approach was developed for quick inspection of (1-
mode) networks obtained from 2-mode networks—a kind of network-based data-mining.
In networks obtained from large 2-mode networks there are often huge differences
in weight. Thus it is not possible to compare the vertices according to the raw data.
Beforehand, we have to normalize the network to make the weights comparable. There
are several ways of doing this. For example:

After a selected normalization, the important parts of a network are obtained by line-cutting
the normalized network at selected level t and preserving components with at least k
vertices.

Algorithms for small networks | | | | | | | | | |

Although it was developed primarily for analysis of large networks, Pajek is also often
used especially for visualizing small networks. It also contains some data analysis proce-
dures with higher order time complexities which can be therefore be used only on smaller
networks, or selected parts of large networks: hierarchical clustering, generalized block
modelling, partitioning signed graphs, TSP (Traveling Salesman Problem), computing
geodesics matrices, etc.

Layout Algorithms and Layout Features | | | | | | | | | |

Since large networks cannot be visualized in detail in a single view, we have first to iden-
tify interesting substructures in such networks and then visualize them as separate views.
Special emphasis is laid in Pajek on automatic generation of network layouts. Several
standard algorithms for automatic graph drawing are implemented: spring embedders
(Kamada-Kawai and Fruchterman-Reingold), layouts determined by eigenvectors (the Lanc-
zos algorithm), drawing in layers (genealogies and other acyclic structures), fish-eye views
and block (matrix) representation. See Figure 4.

Figure 4:
An eigenvector-based
3D layout of a
5-regular graph.

Pajek ist ein unter Windows laufendes Programm zur Analyse und Visualisierung von großen
Netzwerken mit Tausenden, ja, Millionen von Knoten (Vertices). „Pajek“ ist das slowenische
Wort für „Spinne“. Die neueste Version von Pajek ist für nicht-kommerzielle Zwecke frei unter
http://vlado.fmf.uni-lj.si/pub/networks/pajek/ erhältlich.
Die Entwicklung von Pajek begann im November 1996. Das Programm ist in Delphi (Pascal)
geschrieben. Einige Prozeduren hat Matjaz Zaversnik beigetragen. Hauptmotivation für die
Entwicklung von Pajek war die Beobachtung, dass zahlreiche Quellen großer Netzwerke bereits
in maschinenlesbarer Form vorliegen. Pajek sollte Werkzeuge zur Analyse und Visualisierung
von solchen Netzwerken zur Verfügung stellen: von Kooperationsnetzwerken, organischen
Molekülen in der Chemie, Netzwerken von Protein-Rezeptor-Wechselwirkungen, Genealo-
gien, Internet-Netzwerken, Zitiernetzwerken, Diffusionsnetzwerken (AIDS, Nachrichten,

246

These algorithms were modified and extended to enable additional options: drawing with
constraints (optimizing the selected part of the network, fixing some vertices to prede-
fined positions, using values of edges as similarities or dissimilarities), drawing in 3D space.
Pajek also provides tools for manual editing of graph layouts. The values of vectors can
be used to determine several elements of network display such as X, Y, Z coordinates
and the size of the vertex shape. The partition can be represented graphically by the color
and shape of vertices. The values of edges can also be represented by thickness and/or
color. Pajek also supports drawing sequences of networks in its Draw window, and exports
sequences of networks in suitable formats that can be examined with special 2D or 3D
viewers (such as SVG and Mage). Pictures in SVG can be further controlled using support
written in Javascript.

Interfaces | | | | | | | | | |

Pajek also supports some non-native input formats: UCINET DL files; chemical MDLMOL
and BS; and genealogical GEDCOM. The layouts can be exported in the following output
graphic formats that can be examined by special 2D and 3D viewers: Encapsulated Post-
Script (EPS), Scalable Vector Graphics (SVG), VRML, MDLMOL/chime, and Kinemages
(Mage). The main window menu Tools enables export of Pajek’s data to statistical programs
R and SPSS. In the Tools menu, the user can prepare calls to her/his favorite viewers
and other tools. It is also possible to run Pajek (+macros) from other programs (R, Ucinet,
and others).

|||||||||||

This presentation of Pajek is a shortened and updated version of the chapter V. Batagelj, A. Mrvar.
Pajek—Analysis and Visualization of Large Networks, in Jünger, M., Mutzel, P. (Eds.)
Graph Drawing Software, pp 77-103. Springer, Berlin, 2003
This work was partially supported by the Ministry of Education, Science and Sport of Slovenia,
Projects J1-8532 and Z5-3350.

||||||||||||| Pajek—Program for Analysis and Visualization of Large Networks

Vladimir Batagelj / Andrej Mrvar ||||||||||||

Pajek – Ein Programm zur Analyse

und Visualisierung großer Netzwerke

|||||||||||

